15 customisable OKR examples for Data Quality

What are Data Quality OKRs?

The Objective and Key Results (OKR) framework is a simple goal-setting methodology that was introduced at Intel by Andy Grove in the 70s. It became popular after John Doerr introduced it to Google in the 90s, and it's now used by teams of all sizes to set and track ambitious goals at scale.

Formulating strong OKRs can be a complex endeavor, particularly for first-timers. Prioritizing outcomes over projects is crucial when developing your plans.

To aid you in setting your goals, we have compiled a collection of OKR examples customized for Data Quality. Take a look at the templates below for inspiration and guidance.

If you want to learn more about the framework, you can read our OKR guide online.

Building your own Data Quality OKRs with AI

While we have some examples available, it's likely that you'll have specific scenarios that aren't covered here. You can use our free AI generator below or our more complete goal-setting system to generate your own OKRs.

Our customisable Data Quality OKRs examples

We've added many examples of Data Quality Objectives and Key Results, but we did not stop there. Understanding the difference between OKRs and projects is important, so we also added examples of strategic initiatives that relate to the OKRs.

Hope you'll find this helpful!

1OKRs to enhance Data Quality

  • ObjectiveEnhance Data Quality
  • Key ResultImprove data integrity by resolving critical data quality issues within 48 hours
  • Key ResultIncrease accuracy of data by implementing comprehensive data validation checks
  • TaskTrain staff on proper data entry procedures to minimize errors and ensure accuracy
  • TaskRegularly review and update data validation rules to match evolving requirements
  • TaskCreate a thorough checklist of required data fields and validate completeness
  • TaskDesign and implement automated data validation checks throughout the data collection process
  • Key ResultAchieve a 90% completion rate for data cleansing initiatives across all databases
  • Key ResultReduce data duplication by 20% through improved data entry guidelines and training
  • TaskEstablish a feedback system to receive suggestions and address concerns regarding data entry
  • TaskImplement regular assessments to identify areas of improvement and address data duplication issues
  • TaskProvide comprehensive training sessions on data entry guidelines for all relevant employees
  • TaskDevelop concise data entry guidelines highlighting key rules and best practices

2OKRs to improve the overall quality of data across all departments

  • ObjectiveImprove the overall quality of data across all departments
  • Key ResultReduce data inconsistencies by 20% through implementing a standardized data entry process
  • TaskImplement uniform guidelines for data entry across all departments
  • TaskPerform regular audits to maintain data consistency
  • TaskSet up training sessions on standardized data entry procedures
  • Key ResultIncrease data accuracy to 99% through rigorous data validation checks
  • TaskRoutinely monitor and correct data inconsistencies
  • TaskTrain staff on accurate data input methods
  • TaskImplement a robust data validation system
  • Key ResultDouble the number of regular data audits to ensure continued data quality
  • TaskIdentify current data audit frequency and benchmark
  • TaskCommunicate, implement, and track new audit plan
  • TaskEstablish new audit schedule with twice frequency

3OKRs to enhance the quality of data through augmented scrubbing techniques

  • ObjectiveEnhance the quality of data through augmented scrubbing techniques
  • Key ResultTrain 80% of data team members on new robust data scrubbing techniques
  • TaskIdentify specific team members for training in data scrubbing
  • TaskSchedule training sessions focusing on robust data scrubbing techniques
  • TaskConduct regular assessments to ensure successful training
  • Key ResultReduce data scrubbing errors by 20%
  • TaskImplement strict error-checking procedures in the data scrubbing process
  • TaskUtilize automated data cleaning tools to minimize human errors
  • TaskProvide comprehensive training on data scrubbing techniques to the team
  • Key ResultImplement 3 new data scrubbing algorithms by the end of the quarter
  • TaskResearch best practices for data scrubbing algorithms
  • TaskDesign and code 3 new data scrubbing algorithms
  • TaskTest and apply algorithms to existing data sets

4OKRs to enhance data quality and KPI report precision

  • ObjectiveEnhance data quality and KPI report precision
  • Key ResultReduce data quality issues by 30% through regular quality checks and controls
  • TaskTrain team members on data quality control procedures
  • TaskDevelop a system for regular data quality checks
  • TaskImplement corrective actions for identified data issues
  • Key ResultImplement a streamlined process to avoid duplicated KPI reports by 50%
  • TaskCreate a standard template for all KPI reports
  • TaskImplement a report review before distribution to check for duplications
  • TaskAssign a single responsible person for finalizing reports
  • Key ResultImprove report accuracy by 40% through stringent data verification protocols
  • TaskContinually review and update protocols
  • TaskImplement rigorous data verification protocols
  • TaskTrain staff on new verification procedures

5OKRs to enhance data governance maturity with metadata and quality management

  • ObjectiveEnhance data governance maturity with metadata and quality management
  • Key ResultImplement an enterprise-wide metadata management strategy in 75% of departments
  • TaskTrain department leads on the new metadata strategy implementation
  • TaskDevelop custom metadata strategy tailored to departmental needs
  • TaskIdentify key departments requiring metadata management strategy
  • Key ResultDecrease data-related issues by 30% through improved data quality measures
  • TaskIncorporate advanced data quality check software
  • TaskImplement a rigorous data validation process
  • TaskOffer periodic training on data management best practices
  • Key ResultTrain 80% of the team on data governance and quality management concepts
  • TaskIdentify team members requiring data governance training
  • TaskConduct quality management training sessions
  • TaskSchedule training on data governance concepts

6OKRs to enhance metrics quality and interpretability

  • ObjectiveEnhance metrics quality and interpretability
  • Key ResultImplement a metrics dashboard with simple, visually clear displays
  • TaskIdentify key metrics to track and display
  • TaskDesign a user-friendly dashboard layout
  • TaskCode and test the dashboard for functionality
  • Key ResultDevelop 5 additional relevant, actionable metrics by end of Q2
  • TaskImplement and test performance metrics
  • TaskInvestigate potential key performance indicators
  • TaskDesign data collection methods for new metrics
  • Key ResultIncrease the precision of metrics measurement by 15%
  • TaskReview and improve current metrics measurement processes
  • TaskImplement advanced analytics software for accurate data collection
  • TaskTrain staff on precise metrics measurement skills and techniques

7OKRs to enhance Salesforce Lead Quality

  • ObjectiveEnhance Salesforce Lead Quality
  • Key ResultImprove lead scoring accuracy by 10% through data enrichment activities
  • TaskAnalyze current lead scoring model efficiency
  • TaskImplement strategic data enrichment techniques
  • TaskTrain team on data quality management
  • Key ResultLower lead drop-off by 15% through better segmentation
  • TaskCreate personalized content for segmented leads
  • TaskImplement a data-driven lead scoring system
  • TaskDevelop comprehensive profiles for ideal target customers
  • Key ResultAchieve 20% increase in conversion rate of generated leads
  • TaskEnhance lead qualification process to improve lead quality
  • TaskImplement targeted follow-up strategies to reengage cold leads
  • TaskOptimize landing page design to enhance user experience

8OKRs to implement robust tracking of core Quality Assurance (QA) metrics

  • ObjectiveImplement robust tracking of core Quality Assurance (QA) metrics
  • Key ResultDevelop an automated QA metrics tracking system within two weeks
  • TaskIdentify necessary metrics for quality assurance tracking
  • TaskResearch and select software for automation process
  • TaskConfigure software to track and report desired metrics
  • Key ResultDeliver biweekly reports showing improvements in tracked QA metrics
  • TaskCompile and submit a biweekly improvement report
  • TaskHighlight significant improvements in collected QA data
  • TaskGather and analyze QA metrics data every two weeks
  • Key ResultAchieve 100% accuracy in data capture on QA metrics by month three

9OKRs to improve the quality of the data

  • ObjectiveSignificantly improve the quality of the data
  • Key ResultReduce the number of data capture errors by 30%
  • Key ResultReduce delay for data availability from 24h to 4h
  • Key ResultClose top 10 issues relating to data accuracy

10OKRs to enhance data engineering capabilities to drive software innovation

  • ObjectiveEnhance data engineering capabilities to drive software innovation
  • Key ResultImprove data quality by implementing automated data validation and monitoring processes
  • TaskImplement chosen data validation tool
  • TaskResearch various automated data validation tools
  • TaskRegularly monitor and assess data quality
  • Key ResultEnhance software scalability by optimizing data storage and retrieval mechanisms for large datasets
  • TaskOptimize SQL queries for faster data retrieval
  • TaskAdopt a scalable distributed storage system
  • TaskImplement a more efficient database indexing system
  • Key ResultIncrease data processing efficiency by optimizing data ingestion pipelines and reducing processing time
  • TaskDevelop optimization strategies for lagging pipelines
  • TaskImplement solutions to reduce data processing time
  • TaskAnalyze current data ingestion pipelines for efficiency gaps

11OKRs to execute seamless Data Migration aligned with project plan

  • ObjectiveExecute seamless Data Migration aligned with project plan
  • Key ResultTrain 85% of the team on new systems and data use by end of period
  • TaskMonitor and document each member's training progress
  • TaskIdentify team members not yet trained on new systems
  • TaskSchedule training sessions for identified team members
  • Key ResultIdentify and document all data sources to migrate by end of Week 2
  • TaskCreate a list of all existing data sources
  • TaskDocument details of selected data sources
  • TaskAssess and determine sources for migration
  • Key ResultTest and validate data integrity post-migration with 100% accuracy
  • TaskDevelop a detailed data testing and validation plan
  • TaskExecute data integrity checks after migration
  • TaskFix all detected data inconsistencies

12OKRs to attain high-quality, timely data migration during Sprint delivery

  • ObjectiveAttain high-quality, timely data migration during Sprint delivery
  • Key ResultDefine data quality metrics and meet 95% accuracy for all migrated data
  • TaskDevelop a plan to ensure data migration accuracy
  • TaskExecute regular audits to maintain 95% data accuracy
  • TaskIdentify key metrics for defining data quality
  • Key ResultImplement reviews post each Sprint, achieving a 90% satisfaction score from stakeholders
  • TaskMonitor and analyze satisfaction scores for improvement
  • TaskInstitute a stakeholder satisfaction rating system
  • TaskPlan and schedule post-sprint review meetings
  • Key ResultOn-time completion of all migration tasks in 100% of Sprints
  • TaskPrioritize migration tasks according to their criticality
  • TaskAllocate sufficient resources for task completion in each Sprint
  • TaskMonitor task progress closely to ensure on-time completion

13OKRs to effectively generate quality data flow diagrams

  • ObjectiveEffectively generate quality data flow diagrams
  • Key ResultEnsure no errors in final design of at least 8 diagrams validated by team
  • TaskAssign team to thoroughly review each of the 8 diagrams
  • TaskObtain team's approval on updated design of diagrams
  • TaskImplement team's feedback and corrections into final designs
  • Key ResultCreate and complete 10 unique data flow diagrams by end of quarter
  • TaskReview and finalize each diagram
  • TaskIdentify necessary components for each data flow diagram
  • TaskDraft 10 unique data flow diagrams
  • Key ResultIncorporate feedback from peers on first 5 diagrams to improve following 5
  • TaskReview feedback from peers on initial diagrams
  • TaskImplement feedback into subsequent five diagrams
  • TaskIdentify necessary improvements for next diagrams

14OKRs to enhance precision and pace in state regulatory reporting

  • ObjectiveEnhance precision and pace in state regulatory reporting
  • Key ResultImplement a new automation process to decrease reporting time by 30%
  • TaskTrain staff on using the new automation system
  • TaskProcure an automation system suitable for our needs
  • TaskIdentify current reporting processes that can be automated
  • Key ResultReduce regulatory reporting errors by 15% via enhanced employee training
  • TaskEstablish quality checks to identify and fix reporting errors promptly
  • TaskImplement regular training sessions for all reporting staff
  • TaskDevelop comprehensive training program focused on regulatory reporting procedures
  • Key ResultIncrease report accuracy by 20% through intensive data validation by quarter-end
  • TaskRegularly review and correct data errors
  • TaskTrain staff on improved data collection methods
  • TaskImplement stricter data validation procedures immediately

15OKRs to boost CRM channel revenue-streams

  • ObjectiveBoost CRM channel revenue-streams
  • Key ResultImprove existing CRM data quality by 10%
  • TaskConduct an audit of current CRM data for inaccuracies
  • TaskImplement data quality management tools to track inaccuracies
  • TaskProvide training on data entry and updating practices to staff
  • Key ResultAchieve 15% increase in CRM channel sales conversions
  • TaskImplement personalized email marketing strategies for customer engagement
  • TaskLaunch target-based promotions and incentives to boost conversions
  • TaskImprove CRM channel's user interface for better customer experience
  • Key ResultEnhance CRM customer engagement rate by 20%
  • TaskIncrease training sessions for staff to improve CRM utilization and customer engagement
  • TaskDevelop personalized user experiences based on customer profiles in CRM
  • TaskImplement a targeted email marketing campaign for existing CRM customers

Data Quality OKR best practices to boost success

Generally speaking, your objectives should be ambitious yet achievable, and your key results should be measurable and time-bound (using the SMART framework can be helpful). It is also recommended to list strategic initiatives under your key results, as it'll help you avoid the common mistake of listing projects in your KRs.

Here are a couple of best practices extracted from our OKR implementation guide 👇

Tip #1: Limit the number of key results

The #1 role of OKRs is to help you and your team focus on what really matters. Business-as-usual activities will still be happening, but you do not need to track your entire roadmap in the OKRs.

We recommend having 3-4 objectives, and 3-4 key results per objective. A platform like Tability can run audits on your data to help you identify the plans that have too many goals.

Tability Insights DashboardTability's audit dashboard will highlight opportunities to improve OKRs

Tip #2: Commit to weekly OKR check-ins

Don't fall into the set-and-forget trap. It is important to adopt a weekly check-in process to get the full value of your OKRs and make your strategy agile – otherwise this is nothing more than a reporting exercise.

Being able to see trends for your key results will also keep yourself honest.

Tability Insights DashboardTability's check-ins will save you hours and increase transparency

Tip #3: No more than 2 yellow statuses in a row

Yes, this is another tip for goal-tracking instead of goal-setting (but you'll get plenty of OKR examples above). But, once you have your goals defined, it will be your ability to keep the right sense of urgency that will make the difference.

As a rule of thumb, it's best to avoid having more than 2 yellow/at risk statuses in a row.

Make a call on the 3rd update. You should be either back on track, or off track. This sounds harsh but it's the best way to signal risks early enough to fix things.

How to turn your Data Quality OKRs in a strategy map

The rules of OKRs are simple. Quarterly OKRs should be tracked weekly, and yearly OKRs should be tracked monthly. Reviewing progress periodically has several advantages:

  • It brings the goals back to the top of the mind
  • It will highlight poorly set OKRs
  • It will surface execution risks
  • It improves transparency and accountability

Most teams should start with a spreadsheet if they're using OKRs for the first time. Then, once you get comfortable you can graduate to a proper OKRs-tracking tool.

A strategy map in TabilityTability's Strategy Map makes it easy to see all your org's OKRs

If you're not yet set on a tool, you can check out the 5 best OKR tracking templates guide to find the best way to monitor progress during the quarter.

More Data Quality OKR templates

We have more templates to help you draft your team goals and OKRs.

OKRs resources

Here are a list of resources to help you adopt the Objectives and Key Results framework.

What's next? Try Tability's goal-setting AI

You can create an iterate on your OKRs using Tability's unique goal-setting AI.

Watch the demo below, then hop on the platform for a free trial.

Quick nav